Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/31395
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2023-03-07T10:52:51Z-
dc.date.available2023-03-07T10:52:51Z-
dc.date.issued2015-09-09-
dc.identifier.citationYurtkuran, A. ve Emel, E. (2016). "An enhanced artificial bee colony algorithm with solution acceptance rule and probabilistic multisearch". Computational Intelligence and Neuroscience, 2016.en_US
dc.identifier.issn1687-5265-
dc.identifier.issn1687-5273-
dc.identifier.urihttps://doi.org/10.1155/2016/8085953-
dc.identifier.urihttps://www.hindawi.com/journals/cin/2016/8085953/-
dc.identifier.urihttp://hdl.handle.net/11452/31395-
dc.description.abstractThe artificial bee colony (ABC) algorithm is a popular swarm based technique, which is inspired from the intelligent foraging behavior of honeybee swarms. This paper proposes a new variant of ABC algorithm, namely, enhanced ABC with solution acceptance rule and probabilistic multisearch (ABC-SA) to address global optimization problems. A new solution acceptance rule is proposed where, instead of greedy selection between old solution and new candidate solution, worse candidate solutions have a probability to be accepted. Additionally, the acceptance probability of worse candidates is nonlinearly decreased throughout the search process adaptively. Moreover, in order to improve the performance of the ABC and balance the intensification and diversification, a probabilistic multisearch strategy is presented. Three different search equations with distinctive characters are employed using predetermined search probabilities. By implementing a new solution acceptance rule and a probabilistic multisearch approach, the intensification and diversification performance of the ABC algorithm is improved. The proposed algorithmhas been tested on well-known benchmark functions of varying dimensions by comparing against novel ABC variants, as well as several recent state-of-the-art algorithms. Computational results show that the proposed ABC-SA outperforms other ABC variants and is superior to state-of-the-art algorithms proposed in the literature.en_US
dc.language.isoenen_US
dc.publisherHindawien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMathematical & computational biologyen_US
dc.subjectNeurosciences & neurologyen_US
dc.subjectParticle swarm optimizeren_US
dc.subjectGlobal optimizationen_US
dc.subjectDifferential evolutionen_US
dc.subjectSearchen_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectGlobal optimizationen_US
dc.subjectOptimizationen_US
dc.subjectProbabilityen_US
dc.subjectArtificial bee colony algorithmsen_US
dc.subjectArtificial bee colony algorithms (ABC)en_US
dc.subjectBenchmark functionsen_US
dc.subjectComputational resultsen_US
dc.subjectForaging behaviorsen_US
dc.subjectGlobal optimization problemsen_US
dc.subjectIntensification and diversificationsen_US
dc.subjectState-of-the-art algorithmsen_US
dc.subjectAlgorithmsen_US
dc.subject.meshAlgorithmsen_US
dc.subject.meshAnimalsen_US
dc.subject.meshArtificial intelligenceen_US
dc.subject.meshBeesen_US
dc.subject.meshComputer simulationen_US
dc.subject.meshCrowdingen_US
dc.subject.meshProbabilityen_US
dc.subject.meshSocial behavioren_US
dc.titleAn enhanced artificial bee colony algorithm with solution acceptance rule and probabilistic multisearchen_US
dc.typeArticleen_US
dc.identifier.wos000368277100001tr_TR
dc.identifier.scopus2-s2.0-84954427990tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0002-9220-7353tr_TR
dc.contributor.orcid0000-0003-2978-2811tr_TR
dc.identifier.volume2016tr_TR
dc.relation.journalComputational Intelligence and Neuroscienceen_US
dc.contributor.buuauthorYurtkuran, Alkin-
dc.contributor.buuauthorEmel, Erdal-
dc.contributor.researcheridN-8691-2014tr_TR
dc.contributor.researcheridAAH-1410-2021tr_TR
dc.identifier.pubmed26819591tr_TR
dc.subject.wosMathematical & computational biologyen_US
dc.subject.wosNeurosciencesen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.indexed.pubmedPubMeden_US
dc.wos.quartileQ3 (Mathematical & computational biology)en_US
dc.wos.quartileQ4 (Neurosciences)en_US
dc.contributor.scopusid26031880400tr_TR
dc.contributor.scopusid6602919521tr_TR
dc.subject.scopusBees; Exploration and Exploitation; Coloniesen_US
dc.subject.emtreeAlgorithmen_US
dc.subject.emtreeAnimalen_US
dc.subject.emtreeArtificial intelligenceen_US
dc.subject.emtreeBeeen_US
dc.subject.emtreeComputer simulationen_US
dc.subject.emtreeCrowding (area)en_US
dc.subject.emtreePhysiologyen_US
dc.subject.emtreeProbabilityen_US
dc.subject.emtreeSocial behavioren_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Yurtkuran_Emel_2016.pdf783.09 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons