Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11452/31484
Başlık: Charge transfer properties through graphene for applications in gaseous detectors
Yazarlar: Franchino, S.
Gonzalez-Diaz, Diego
Hall-Wilton, Richard
Jackman, Richard
Muller, H.
Nguyen, T. T.
de Oliveira, R.
Oliveri, Eraldo
Pfeiffer, Dorothea
Resnati, F.
Ropelewski, L.
Smith, Joe
van Stenis, M.
Streli, Christina
Thuiner, P.
Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Fizik Bölümü.
Veenhof, Robert J.
6603742499
Anahtar kelimeler: Instruments & instrumentation
Nuclear science & technology
Physics
Graphene
Micro-pattern gaseous detectors
GEM
Ion back-flow
Carbon
Charge transfer
Electric fields
Electron multipliers
Gas detectors
Gems
Honeycomb structures
Ions
Charge transfer properties
Copper substrates
Gaseous detectors
Gaseous electron multipliers
Honeycomb lattices
Mechanical and electrical properties
Transparency properties
Yayın Tarihi: 11-Tem-2016
Yayıncı: Elsevier
Atıf: Franchino, S. vd. (2016). "Charge transfer properties through graphene for applications in gaseous detectors". Nuclear Instruments and Methods in Physics Research, Section A- Accelerators, Spectrometers, Detectors and Associated Equipment, 824, 571-574.
Özet: Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical and electrical properties. Regarded as the thinnest and narrowest conductive mesh, it has drastically different transmission behaviours when bombarded with electrons and ions in vacuum. This property, if confirmed in gas, may be a definitive solution for the ion back-flow problem in gaseous detectors. In order to ascertain this aspect, graphene layers of dimensions of about 2 x 2 cm(2), grown on a copper substrate, are transferred onto a flat metal surface with holes, so that the graphene layer is freely suspended. The graphene and the support are installed into a gaseous detector equipped with a triple Gaseous Electron Multiplier (GEM), and the transparency properties to electrons and ions are studied in gas as a function of the electric fields. The techniques to produce the graphene samples are described, and we report on preliminary tests of graphene-coated GEMs.
URI: https://doi.org/10.1016/j.nima.2015.11.077
https://www.sciencedirect.com/science/article/pii/S0168900215014515
http://hdl.handle.net/11452/31484
ISSN: 0168-9002
1872-9576
Koleksiyonlarda Görünür:Scopus
Web of Science

Bu öğenin dosyaları:
Dosya Açıklama BoyutBiçim 
Veenhof_vd_2016.pdf471.14 kBAdobe PDFKüçük resim
Göster/Aç


Bu öğe kapsamında lisanslı Creative Commons License Creative Commons