Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/32631
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDas, Kinkar Chandra-
dc.contributor.authorAkgüneş, Nihat-
dc.contributor.authorÇevik, Ahmet Sinan-
dc.date.accessioned2023-05-12T06:36:35Z-
dc.date.available2023-05-12T06:36:35Z-
dc.date.issued2013-
dc.identifier.citationAkgüneş, N. vd. (2013). “Some properties on the lexicographic product of graphs obtained by monogenic semigroups”. Journal of Inequalities and Applications, 2013.en_US
dc.identifier.issn1029-242X-
dc.identifier.urihttps://doi.org/10.1186/1029-242X-2013-238-
dc.identifier.urihttps://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-238-
dc.identifier.urihttp://hdl.handle.net/11452/32631-
dc.description.abstractIn (Das et al. in J. Inequal. Appl. 2013:44, 2013), a new graph Gamma (S-M) on monogenic semigroups S-M (with zero) having elements {0, x, x(2), x(3),..., x(n)} was recently defined. The vertices are the non-zero elements x, x(2), x(3),..., x(n) and, for 1 <= i, j <= n, any two distinct vertices x(i) and x(j) are adjacent if x(i)x(j) = 0 in S-M. As a continuing study, in an unpublished work, some well-known indices (first Zagreb index, second Zagreb index, Randic index, geometric-arithmetic index, atom-bond connectivity index, Wiener index, Harary index, first and second Zagreb eccentricity indices, eccentric connectivity index, the degree distance) over Gamma (S-M) were investigated by the same authors of this paper. In the light of the above references, our main aim in this paper is to extend these studies to the lexicographic product over Gamma (S-M). In detail, we investigate the diameter, radius, girth, maximum and minimum degree, chromatic number, clique number and domination number for the lexicographic product of any two (not necessarily different) graphs Gamma (S-M(1)) and Gamma (S-M(2)).en_US
dc.description.sponsorshipSelçuk Üniversitesitr_TR
dc.description.sponsorshipSungkyunkwan University (BK21)en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMathematicsen_US
dc.subjectMonogenic semigroupen_US
dc.subjectLexicographic producten_US
dc.subjectClique numberen_US
dc.subjectChromatic numberen_US
dc.subjectIndependence numberen_US
dc.subjectDomination numberen_US
dc.subjectZero-divisor graphen_US
dc.subjectRadiusen_US
dc.subjectNumberen_US
dc.titleSome properties on the lexicographic product of graphs obtained by monogenic semigroupsen_US
dc.typeArticleen_US
dc.identifier.wos000320668600002tr_TR
dc.identifier.scopus2-s2.0-84894585022tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.identifier.volume2013tr_TR
dc.relation.journalJournal of Inequalities and Applicationsen_US
dc.contributor.buuauthorCangül, İsmail Naci-
dc.contributor.researcheridJ-3505-2017tr_TR
dc.contributor.researcheridABA-6206-2020tr_TR
dc.relation.collaborationYurt içitr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.subject.wosMathematics, applieden_US
dc.subject.wosMathematicsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2en_US
dc.contributor.scopusid57189022403tr_TR
dc.subject.scopusGraph; Commutative Ring; Annihilatoren_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Cangül_vd_2013.pdf242.49 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons