Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/32721
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarpuz, Eylem Güzel-
dc.contributor.authorÇevik, Ahmet Sinan-
dc.contributor.authorKoppitz, Jörg-
dc.date.accessioned2023-05-18T12:38:19Z-
dc.date.available2023-05-18T12:38:19Z-
dc.date.issued2013-03-29-
dc.identifier.citationKarpuz, E. G. vd. (2013). “Some fixed-point results on (generalized) Bruck-Reilly-extensions of monoids”. Fixed Point Theory and Applications, 2013.en_US
dc.identifier.issn1687-1812-
dc.identifier.urihttps://doi.org/10.1186/1687-1812-2013-78-
dc.identifier.urihttps://fixedpointtheoryandalgorithms.springeropen.com/articles/10.1186/1687-1812-2013-78-
dc.identifier.urihttp://hdl.handle.net/11452/32721-
dc.description.abstractIn this paper, we determine necessary and sufficient conditions for Bruck-Reilly and generalized Bruck-Reilly *-extensions of arbitrary monoids to be regular, coregular and strongly pi-inverse. These semigroup classes have applications in various field of mathematics, such as matrix theory, discrete mathematics and p-adic analysis (especially in operator theory). In addition, while regularity and coregularity have so many applications in the meaning of boundaries (again in operator theory), inverse monoids and Bruck-Reilly extensions contain a mixture fixed-point results of algebra, topology and geometry within the purposes of this journal.en_US
dc.description.sponsorshipSelçuk Üniversitesi (13701071)tr_TR
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBruck-Reilly extensionen_US
dc.subjectGeneralized Bruck-Reilly-extensionen_US
dc.subjectPi-inverse monoiden_US
dc.subjectRegular monoiden_US
dc.subjectConstructionsen_US
dc.titleSome fixed-point results on (generalized) Bruck-Reilly-extensions of monoidsen_US
dc.typeArticleen_US
dc.identifier.wos000326449800001tr_TR
dc.identifier.scopus2-s2.0-84902584547tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.tr_TR
dc.relation.bap2012-15tr_TR
dc.relation.bap2012-19tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.identifier.volume2013tr_TR
dc.relation.journalFixed Point Theory and Applicationsen_US
dc.contributor.buuauthorCangül, İsmail Naci-
dc.contributor.researcheridJ-3505-2017tr_TR
dc.contributor.researcheridABA-6206-2020tr_TR
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.contributor.scopusid57189022403tr_TR
dc.subject.scopusCongruence; Inverse Semigroup; Monoidsen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Cangül_vd_2013.pdf285.71 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons