Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız:
http://hdl.handle.net/11452/32849
Tüm üstveri kaydı
Dublin Core Alanı | Değer | Dil |
---|---|---|
dc.contributor.author | Das, Kinkar Chandra | - |
dc.contributor.author | Çevik, Ahmet Sinan | - |
dc.date.accessioned | 2023-05-29T08:45:29Z | - |
dc.date.available | 2023-05-29T08:45:29Z | - |
dc.date.issued | 2013-08 | - |
dc.identifier.citation | Das, K. C. vd. (2013). “The number of spanning trees of a graph”. Journal of Inequalities and Applications, 2013. | en_US |
dc.identifier.issn | 1029-242X | - |
dc.identifier.uri | https://doi.org/10.1186/1029-242X-2013-395 | - |
dc.identifier.uri | https://doi.org/10.1186/1029-242X-2013-395 | - |
dc.identifier.uri | http://hdl.handle.net/11452/32849 | - |
dc.description.abstract | Let G be a simple connected graph of order n, m edges, maximum degree Delta(1) and minimum degree delta. Li et al. (Appl. Math. Lett. 23: 286-290, 2010) gave an upper bound on number of spanning trees of a graph in terms of n, m, Delta(1) and delta: t(G) <= delta (2m-Delta(1)-delta-1/n-3)(n-3). The equality holds if and only if G congruent to K-1,K-n-1, G congruent to K-n, G congruent to K-1 boolean OR (K-1 boolean OR Kn-2) or G congruent to K-n - e, where e is any edge of K-n. Unfortunately, this upper bound is erroneous. In particular, we show that this upper bound is not true for complete graph K-n. In this paper we obtain some upper bounds on the number of spanning trees of graph G in terms of its structural parameters such as the number of vertices (n), the number of edges (m), maximum degree (Delta(1)), second maximum degree (Delta(2)), minimum degree (delta), independence number (alpha), clique number (omega). Moreover, we give the Nordhaus-Gaddum-type result for number of spanning trees. | en_US |
dc.description.sponsorship | Faculty research Fund, Sungkyunkwan University | en_US |
dc.description.sponsorship | Korean Government (2013R1A1A2009341) | en_US |
dc.description.sponsorship | Selçuk Üniversitesi | en_US |
dc.description.sponsorship | Glaucoma Research Foundation | en_US |
dc.description.sponsorship | Hong Kong Baptist University | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Atıf Gayri Ticari Türetilemez 4.0 Uluslararası | tr_TR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Mathematics | en_US |
dc.subject | Graph | en_US |
dc.subject | Spanning trees | en_US |
dc.subject | Independence number | en_US |
dc.subject | Clique number | en_US |
dc.subject | First Zagreb index | en_US |
dc.subject | Molecular-orbitals | en_US |
dc.subject | Zagreb indexes | en_US |
dc.title | The number of spanning trees of a graph | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000336908800001 | tr_TR |
dc.identifier.scopus | 2-s2.0-84894413510 | tr_TR |
dc.relation.tubitak | TUBİTAK | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı. | tr_TR |
dc.relation.bap | Uludağ Üniversitesi | tr_TR |
dc.contributor.orcid | 0000-0002-0700-5774 | tr_TR |
dc.contributor.orcid | 0000-0003-2576-160X | tr_TR |
dc.identifier.volume | 2013 | tr_TR |
dc.relation.journal | Journal of Inequalities and Applications | en_US |
dc.contributor.buuauthor | Cangül, İsmail Naci | - |
dc.contributor.researcherid | J-3505-2017 | tr_TR |
dc.relation.collaboration | Yurt içi | tr_TR |
dc.relation.collaboration | Yurt dışı | tr_TR |
dc.subject.wos | Mathematics, applied | en_US |
dc.subject.wos | Mathematics | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q2 | en_US |
dc.contributor.scopusid | 57189022403 | tr_TR |
dc.subject.scopus | Signless Laplacian; Eigenvalue; Signed Graph | en_US |
Koleksiyonlarda Görünür: | Scopus Web of Science |
Bu öğenin dosyaları:
Dosya | Açıklama | Boyut | Biçim | |
---|---|---|---|---|
Cangül_vd_2013.pdf | 325.18 kB | Adobe PDF | ![]() Göster/Aç |
Bu öğe kapsamında lisanslı Creative Commons License