Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/32849
Title: The number of spanning trees of a graph
Authors: Das, Kinkar Chandra
Çevik, Ahmet Sinan
Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.
0000-0002-0700-5774
0000-0003-2576-160X
Cangül, İsmail Naci
J-3505-2017
57189022403
Keywords: Mathematics
Graph
Spanning trees
Independence number
Clique number
First Zagreb index
Molecular-orbitals
Zagreb indexes
Issue Date: Aug-2013
Publisher: Springer
Citation: Das, K. C. vd. (2013). “The number of spanning trees of a graph”. Journal of Inequalities and Applications, 2013.
Abstract: Let G be a simple connected graph of order n, m edges, maximum degree Delta(1) and minimum degree delta. Li et al. (Appl. Math. Lett. 23: 286-290, 2010) gave an upper bound on number of spanning trees of a graph in terms of n, m, Delta(1) and delta: t(G) <= delta (2m-Delta(1)-delta-1/n-3)(n-3). The equality holds if and only if G congruent to K-1,K-n-1, G congruent to K-n, G congruent to K-1 boolean OR (K-1 boolean OR Kn-2) or G congruent to K-n - e, where e is any edge of K-n. Unfortunately, this upper bound is erroneous. In particular, we show that this upper bound is not true for complete graph K-n. In this paper we obtain some upper bounds on the number of spanning trees of graph G in terms of its structural parameters such as the number of vertices (n), the number of edges (m), maximum degree (Delta(1)), second maximum degree (Delta(2)), minimum degree (delta), independence number (alpha), clique number (omega). Moreover, we give the Nordhaus-Gaddum-type result for number of spanning trees.
URI: https://doi.org/10.1186/1029-242X-2013-395
https://doi.org/10.1186/1029-242X-2013-395
http://hdl.handle.net/11452/32849
ISSN: 1029-242X
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Cangül_vd_2013.pdf325.18 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons