Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/32879
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Das, Kinkar Chandra | - |
dc.contributor.author | Maden, Ayşe Dilek | - |
dc.contributor.author | Çevik, Ahmet Sinan | - |
dc.date.accessioned | 2023-05-30T10:44:45Z | - |
dc.date.available | 2023-05-30T10:44:45Z | - |
dc.date.issued | 2013-12 | - |
dc.identifier.citation | Das, K. C. vd. (2013). “On the spectral radius of bipartite graphs which are nearly complete”. Journal of Inequalities and Applications, 2013. | en_US |
dc.identifier.issn | 1029-242X | - |
dc.identifier.uri | https://doi.org/10.1186/1029-242X-2013-121 | - |
dc.identifier.uri | https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-121 | - |
dc.identifier.uri | http://hdl.handle.net/11452/32879 | - |
dc.description.abstract | For p, q, r, s, t is an element of Z(+) with rt <= p and st <= q, let G = G(p, q; r, s; t) be the bipartite graph with partite sets U = {u(1), ..., u(p)} and V = {v(1),..., v(q)} such that any two edges u(i) and v(j) are not adjacent if and only if there exists a positive integer k with 1 <= k <= t such that (k - 1) r + 1 <= i <= kr and (k - 1) s + 1 <= j <= ks. Under these circumstances, Chen et al. (Linear Algebra Appl. 432: 606-614, 2010) presented the following conjecture: Assume that p <= q, k < p, vertical bar U vertical bar = p, vertical bar V vertical bar = q and vertical bar E(G)vertical bar = pq - k. Then whether it is true that lambda(1)(G) <= lambda(1)(G(p, q; k, 1; 1)) = root pq - k + root p(2)q(2) - 6pqk + 4pk + 4qk(2) - 3k(2)/2. In this paper, we prove this conjecture for the range min(vh is an element of V){deg v(h)} <= left perpendicular p-1/2right perpendicular. | en_US |
dc.description.sponsorship | Selçuk Üniversitesi | tr_TR |
dc.description.sponsorship | Ministry of Education & Human Resources Development (MOEHRD), Republic of Korea | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Atıf Gayri Ticari Türetilemez 4.0 Uluslararası | tr_TR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Mathematics | en_US |
dc.subject | Bipartite graph | en_US |
dc.subject | Adjacency matrix | en_US |
dc.subject | Spectral radius | en_US |
dc.subject | Eigenvalues | en_US |
dc.subject | Conjectures | en_US |
dc.subject | Bounds | en_US |
dc.subject | Proof | en_US |
dc.title | On the spectral radius of bipartite graphs which are nearly complete | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000317992400001 | tr_TR |
dc.identifier.scopus | 2-s2.0-84894322267 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı. | tr_TR |
dc.relation.bap | BAP | tr_TR |
dc.contributor.orcid | 0000-0002-0700-5774 | tr_TR |
dc.contributor.orcid | 0000-0002-0700-5774 | tr_TR |
dc.identifier.volume | 2013 | tr_TR |
dc.relation.journal | Journal of Inequalities and Applications | en_US |
dc.contributor.buuauthor | Cangül, İsmail Naci | - |
dc.contributor.researcherid | J-3505-2017 | tr_TR |
dc.contributor.researcherid | ABA-6206-2020 | tr_TR |
dc.relation.collaboration | Yurt dışı | tr_TR |
dc.relation.collaboration | Yurt içi | tr_TR |
dc.subject.wos | Mathematics, applied | en_US |
dc.subject.wos | Mathematics | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q2 | en_US |
dc.contributor.scopusid | 57189022403 | tr_TR |
dc.subject.scopus | Signless Laplacian; Eigenvalue; Signed Graph | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Cangül_vd_2013.pdf | 227.73 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License