Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/32879
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDas, Kinkar Chandra-
dc.contributor.authorMaden, Ayşe Dilek-
dc.contributor.authorÇevik, Ahmet Sinan-
dc.date.accessioned2023-05-30T10:44:45Z-
dc.date.available2023-05-30T10:44:45Z-
dc.date.issued2013-12-
dc.identifier.citationDas, K. C. vd. (2013). “On the spectral radius of bipartite graphs which are nearly complete”. Journal of Inequalities and Applications, 2013.en_US
dc.identifier.issn1029-242X-
dc.identifier.urihttps://doi.org/10.1186/1029-242X-2013-121-
dc.identifier.urihttps://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-121-
dc.identifier.urihttp://hdl.handle.net/11452/32879-
dc.description.abstractFor p, q, r, s, t is an element of Z(+) with rt <= p and st <= q, let G = G(p, q; r, s; t) be the bipartite graph with partite sets U = {u(1), ..., u(p)} and V = {v(1),..., v(q)} such that any two edges u(i) and v(j) are not adjacent if and only if there exists a positive integer k with 1 <= k <= t such that (k - 1) r + 1 <= i <= kr and (k - 1) s + 1 <= j <= ks. Under these circumstances, Chen et al. (Linear Algebra Appl. 432: 606-614, 2010) presented the following conjecture: Assume that p <= q, k < p, vertical bar U vertical bar = p, vertical bar V vertical bar = q and vertical bar E(G)vertical bar = pq - k. Then whether it is true that lambda(1)(G) <= lambda(1)(G(p, q; k, 1; 1)) = root pq - k + root p(2)q(2) - 6pqk + 4pk + 4qk(2) - 3k(2)/2. In this paper, we prove this conjecture for the range min(vh is an element of V){deg v(h)} <= left perpendicular p-1/2right perpendicular.en_US
dc.description.sponsorshipSelçuk Üniversitesitr_TR
dc.description.sponsorshipMinistry of Education & Human Resources Development (MOEHRD), Republic of Koreaen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMathematicsen_US
dc.subjectBipartite graphen_US
dc.subjectAdjacency matrixen_US
dc.subjectSpectral radiusen_US
dc.subjectEigenvaluesen_US
dc.subjectConjecturesen_US
dc.subjectBoundsen_US
dc.subjectProofen_US
dc.titleOn the spectral radius of bipartite graphs which are nearly completeen_US
dc.typeArticleen_US
dc.identifier.wos000317992400001tr_TR
dc.identifier.scopus2-s2.0-84894322267tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.tr_TR
dc.relation.bapBAPtr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.identifier.volume2013tr_TR
dc.relation.journalJournal of Inequalities and Applicationsen_US
dc.contributor.buuauthorCangül, İsmail Naci-
dc.contributor.researcheridJ-3505-2017tr_TR
dc.contributor.researcheridABA-6206-2020tr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosMathematics, applieden_US
dc.subject.wosMathematicsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2en_US
dc.contributor.scopusid57189022403tr_TR
dc.subject.scopusSignless Laplacian; Eigenvalue; Signed Graphen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Cangül_vd_2013.pdf227.73 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons