Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız:
http://hdl.handle.net/11452/32879
Başlık: | On the spectral radius of bipartite graphs which are nearly complete |
Yazarlar: | Das, Kinkar Chandra Maden, Ayşe Dilek Çevik, Ahmet Sinan Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı. 0000-0002-0700-5774 0000-0002-0700-5774 Cangül, İsmail Naci J-3505-2017 ABA-6206-2020 57189022403 |
Anahtar kelimeler: | Mathematics Bipartite graph Adjacency matrix Spectral radius Eigenvalues Conjectures Bounds Proof |
Yayın Tarihi: | Ara-2013 |
Yayıncı: | Springer |
Atıf: | Das, K. C. vd. (2013). “On the spectral radius of bipartite graphs which are nearly complete”. Journal of Inequalities and Applications, 2013. |
Özet: | For p, q, r, s, t is an element of Z(+) with rt <= p and st <= q, let G = G(p, q; r, s; t) be the bipartite graph with partite sets U = {u(1), ..., u(p)} and V = {v(1),..., v(q)} such that any two edges u(i) and v(j) are not adjacent if and only if there exists a positive integer k with 1 <= k <= t such that (k - 1) r + 1 <= i <= kr and (k - 1) s + 1 <= j <= ks. Under these circumstances, Chen et al. (Linear Algebra Appl. 432: 606-614, 2010) presented the following conjecture: Assume that p <= q, k < p, vertical bar U vertical bar = p, vertical bar V vertical bar = q and vertical bar E(G)vertical bar = pq - k. Then whether it is true that lambda(1)(G) <= lambda(1)(G(p, q; k, 1; 1)) = root pq - k + root p(2)q(2) - 6pqk + 4pk + 4qk(2) - 3k(2)/2. In this paper, we prove this conjecture for the range min(vh is an element of V){deg v(h)} <= left perpendicular p-1/2right perpendicular. |
URI: | https://doi.org/10.1186/1029-242X-2013-121 https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-121 http://hdl.handle.net/11452/32879 |
ISSN: | 1029-242X |
Koleksiyonlarda Görünür: | Scopus Web of Science |
Bu öğenin dosyaları:
Dosya | Açıklama | Boyut | Biçim | |
---|---|---|---|---|
Cangül_vd_2013.pdf | 227.73 kB | Adobe PDF | Göster/Aç |
Bu öğe kapsamında lisanslı Creative Commons License