Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/33031
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2023-06-14T07:10:55Z-
dc.date.available2023-06-14T07:10:55Z-
dc.date.issued2019-02-
dc.identifier.citationDelen, S. ve Cangül, İ. N. (2019). ''Extremal problems on components and loops in graphs''. Acta Mathematica Sinica-English Series, 35(2), 161-171.en_US
dc.identifier.issn1439-8516-
dc.identifier.issn1439-7617-
dc.identifier.urihttps://doi.org/10.1007/s10114-018-8086-6-
dc.identifier.urihttps://link.springer.com/article/10.1007/s10114-018-8086-6-
dc.identifier.urihttp://hdl.handle.net/11452/33031-
dc.description.abstractThe authors recently defined a new graph invariant denoted by (G) only in terms of a given degree sequence which is also related to the Euler characteristic. It has many important combinatorial applications in graph theory and gives direct information compared to the better known Euler characteristic on the realizability, connectedness, cyclicness, components, chords, loops etc. Many similar classification problems can be solved by means of . All graphs G so that (G)-4 are shown to be disconnected, and if (G)-2, then the graph is potentially connected. It is also shown that if the realization is a connected graph and (G)-2, then certainly the graph should be a tree. Similarly, it is shown that if the realization is a connected graph G and (G)0, then certainly the graph should be cyclic. Also, when (G)-4, the components of the disconnected graph could not all be cyclic and if all the components of G are cyclic, then (G)0. In this paper, we study an extremal problem regarding graphs. We find the maximum number of loops for three possible classes of graphs. We also state a result giving the maximum number of components amongst all possible realizations of a given degree sequence.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMathematicsen_US
dc.subjectGraph characteristicen_US
dc.subjectConnectednessen_US
dc.subjectCyclic graphen_US
dc.subjectAcyclic graphen_US
dc.subjectDegree sequenceen_US
dc.subject05C10en_US
dc.subject05C30en_US
dc.subject05C35en_US
dc.subjectRealizabilityen_US
dc.titleExtremal problems on components and loops in graphsen_US
dc.typeArticleen_US
dc.identifier.wos000457078100001tr_TR
dc.identifier.scopus2-s2.0-85055703450tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentBursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.identifier.startpage161tr_TR
dc.identifier.endpage171tr_TR
dc.identifier.volume35tr_TR
dc.identifier.issue2tr_TR
dc.relation.journalActa Mathematica Sinica-English Seriesen_US
dc.contributor.buuauthorDelen, Sadık-
dc.contributor.buuauthorCangül, İsmail Naci-
dc.contributor.researcheridABA-6206-2020tr_TR
dc.contributor.researcheridJ-3505-2017tr_TR
dc.subject.wosMathematics, applieden_US
dc.subject.wosMathematicsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3 (Mathematics)en_US
dc.wos.quartileQ4 (Mathematics, applied)en_US
dc.contributor.scopusid57204472528tr_TR
dc.contributor.scopusid57189022403tr_TR
dc.subject.scopusDegree Sequence; Split Graph; Graphen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.