Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/33031
Title: | Extremal problems on components and loops in graphs |
Authors: | Bursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. 0000-0002-0700-5774 0000-0002-0700-5774 Delen, Sadık Cangül, İsmail Naci ABA-6206-2020 J-3505-2017 57204472528 57189022403 |
Keywords: | Mathematics Graph characteristic Connectedness Cyclic graph Acyclic graph Degree sequence 05C10 05C30 05C35 Realizability |
Issue Date: | Feb-2019 |
Publisher: | Springer |
Citation: | Delen, S. ve Cangül, İ. N. (2019). ''Extremal problems on components and loops in graphs''. Acta Mathematica Sinica-English Series, 35(2), 161-171. |
Abstract: | The authors recently defined a new graph invariant denoted by (G) only in terms of a given degree sequence which is also related to the Euler characteristic. It has many important combinatorial applications in graph theory and gives direct information compared to the better known Euler characteristic on the realizability, connectedness, cyclicness, components, chords, loops etc. Many similar classification problems can be solved by means of . All graphs G so that (G)-4 are shown to be disconnected, and if (G)-2, then the graph is potentially connected. It is also shown that if the realization is a connected graph and (G)-2, then certainly the graph should be a tree. Similarly, it is shown that if the realization is a connected graph G and (G)0, then certainly the graph should be cyclic. Also, when (G)-4, the components of the disconnected graph could not all be cyclic and if all the components of G are cyclic, then (G)0. In this paper, we study an extremal problem regarding graphs. We find the maximum number of loops for three possible classes of graphs. We also state a result giving the maximum number of components amongst all possible realizations of a given degree sequence. |
URI: | https://doi.org/10.1007/s10114-018-8086-6 https://link.springer.com/article/10.1007/s10114-018-8086-6 http://hdl.handle.net/11452/33031 |
ISSN: | 1439-8516 1439-7617 |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.