Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/33405
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2023-08-08T11:54:34Z | - |
dc.date.available | 2023-08-08T11:54:34Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Soydan, G. (2017). ''On the Diophantine equation (x+1)(k) (x+2)(k) + . . . plus (lx)(k) = y(n)''. Publicationes Mathematicae Debrecen, 91(3-4), 369-382. | en_US |
dc.identifier.issn | 0033-3883 | - |
dc.identifier.uri | https://doi.org/10.5486/PMD.2017.7679 | - |
dc.identifier.uri | https://publi.math.unideb.hu/load_doi.php?pdoi=10_5486_PMD_2017_7679 | - |
dc.identifier.uri | https://arxiv.org/abs/1701.02466 | - |
dc.identifier.uri | http://hdl.handle.net/11452/33405 | - |
dc.description.abstract | Let k, l >= 2 be fixed integers. In this paper, firstly, we prove that all solutions of the equation (x + 1)(k) + (x + 2)(k) + . . . + (lx)(k) = y(n) in integers x,y,n with x, y >= 1, n >= 2 satisfy n < C-1, where C-1 = C-1(l, k) is an effectively computable constant. Secondly, we prove that all solutions of this equation in integers x, y, n with x,y >= 1,n >= 2, k not equal 3 and I 0 (mod 2) satisfy max{x, y, n} < C-2, where C-2 is an effectively computable constant depending only on k and I. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Kossuth Lajos Tudomanyegyetem | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Bernoulli polynomials | en_US |
dc.subject | High degree equations | en_US |
dc.title | On the Diophantine equation (x+1)(k) (x+2)(k) + . . . plus (lx)(k) = y(n) | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000416149400008 | tr_TR |
dc.identifier.scopus | 2-s2.0-85034000037 | tr_TR |
dc.relation.tubitak | 2219 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. | tr_TR |
dc.identifier.startpage | 369 | tr_TR |
dc.identifier.endpage | 382 | tr_TR |
dc.identifier.volume | 91 | tr_TR |
dc.identifier.issue | 3-4 | tr_TR |
dc.relation.journal | Publicationes Mathematicae Debrecen | en_US |
dc.contributor.buuauthor | Soydan, Gökhan | - |
dc.subject.wos | Mathematics | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q4 | en_US |
dc.contributor.scopusid | 23566953200 | tr_TR |
dc.subject.scopus | Diophantine Equation; Number; Linear Forms in Logarithms | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.