Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/33405
Title: | On the Diophantine equation (x+1)(k) (x+2)(k) + . . . plus (lx)(k) = y(n) |
Authors: | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. Soydan, Gökhan 23566953200 |
Keywords: | Mathematics Bernoulli polynomials High degree equations |
Issue Date: | 2017 |
Publisher: | Kossuth Lajos Tudomanyegyetem |
Citation: | Soydan, G. (2017). ''On the Diophantine equation (x+1)(k) (x+2)(k) + . . . plus (lx)(k) = y(n)''. Publicationes Mathematicae Debrecen, 91(3-4), 369-382. |
Abstract: | Let k, l >= 2 be fixed integers. In this paper, firstly, we prove that all solutions of the equation (x + 1)(k) + (x + 2)(k) + . . . + (lx)(k) = y(n) in integers x,y,n with x, y >= 1, n >= 2 satisfy n < C-1, where C-1 = C-1(l, k) is an effectively computable constant. Secondly, we prove that all solutions of this equation in integers x, y, n with x,y >= 1,n >= 2, k not equal 3 and I 0 (mod 2) satisfy max{x, y, n} < C-2, where C-2 is an effectively computable constant depending only on k and I. |
URI: | https://doi.org/10.5486/PMD.2017.7679 https://publi.math.unideb.hu/load_doi.php?pdoi=10_5486_PMD_2017_7679 https://arxiv.org/abs/1701.02466 http://hdl.handle.net/11452/33405 |
ISSN: | 0033-3883 |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.