Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/33809
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzkoç, Arzu-
dc.date.accessioned2023-09-08T13:28:59Z-
dc.date.available2023-09-08T13:28:59Z-
dc.date.issued2016-07-
dc.identifier.citationTekcan, A. vd. (2016). "Some algebraic relations on integer sequences involving oblong and balancing numbers". Ars Combinatoria, 128, 11-31.en_US
dc.identifier.issn0381-7032-
dc.identifier.urihttp://hdl.handle.net/11452/33809-
dc.description.abstractLet k >= 0 be an integer. Oblong (pronic) numbers are numbers of the form O-k = k(k+1). In this work, we set a new integer sequence B = B-n(k) defined as B-0 = 0, B-1 = 1 and B-n = O-k Bn-1 - Bn-2 for n >= 2 and then derived some algebraic relations on it. Later, we give some new results on balancing numbers via oblong numbers.en_US
dc.language.isoenen_US
dc.publisherCharles Babbage Research Centreen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMathematicsen_US
dc.subjectFibonacci numbersen_US
dc.subjectLucas numbersen_US
dc.subjectPell numbersen_US
dc.subjectOblong numbersen_US
dc.subjectBalancing numbersen_US
dc.subjectBinary linear recurrencesen_US
dc.subjectCirculant matrixen_US
dc.subjectSpectral normen_US
dc.subjectSimple continued fraction expansionen_US
dc.subjectCross-ratioen_US
dc.titleSome algebraic relations on integer sequences involving oblong and balancing numbersen_US
dc.typeArticleen_US
dc.identifier.wos000380622200002tr_TR
dc.identifier.scopus2-s2.0-85031328851tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.relation.bapUAP(F)-2010/55tr_TR
dc.identifier.startpage11tr_TR
dc.identifier.endpage31tr_TR
dc.identifier.volume128tr_TR
dc.relation.journalArs Combinatoriaen_US
dc.contributor.buuauthorTekcan, Ahmet-
dc.contributor.buuauthorEraşık, Meltem E.-
dc.contributor.researcheridAAH-8518-2021tr_TR
dc.contributor.researcheridCQA-6599-2022tr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosMathematicsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.contributor.scopusid55883777900tr_TR
dc.contributor.scopusid57196046447tr_TR
dc.subject.scopusDiophantine Equation; Number; Linear Forms in Logarithmsen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.