Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/33809
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Özkoç, Arzu | - |
dc.date.accessioned | 2023-09-08T13:28:59Z | - |
dc.date.available | 2023-09-08T13:28:59Z | - |
dc.date.issued | 2016-07 | - |
dc.identifier.citation | Tekcan, A. vd. (2016). "Some algebraic relations on integer sequences involving oblong and balancing numbers". Ars Combinatoria, 128, 11-31. | en_US |
dc.identifier.issn | 0381-7032 | - |
dc.identifier.uri | http://hdl.handle.net/11452/33809 | - |
dc.description.abstract | Let k >= 0 be an integer. Oblong (pronic) numbers are numbers of the form O-k = k(k+1). In this work, we set a new integer sequence B = B-n(k) defined as B-0 = 0, B-1 = 1 and B-n = O-k Bn-1 - Bn-2 for n >= 2 and then derived some algebraic relations on it. Later, we give some new results on balancing numbers via oblong numbers. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Charles Babbage Research Centre | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Fibonacci numbers | en_US |
dc.subject | Lucas numbers | en_US |
dc.subject | Pell numbers | en_US |
dc.subject | Oblong numbers | en_US |
dc.subject | Balancing numbers | en_US |
dc.subject | Binary linear recurrences | en_US |
dc.subject | Circulant matrix | en_US |
dc.subject | Spectral norm | en_US |
dc.subject | Simple continued fraction expansion | en_US |
dc.subject | Cross-ratio | en_US |
dc.title | Some algebraic relations on integer sequences involving oblong and balancing numbers | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000380622200002 | tr_TR |
dc.identifier.scopus | 2-s2.0-85031328851 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. | tr_TR |
dc.relation.bap | UAP(F)-2010/55 | tr_TR |
dc.identifier.startpage | 11 | tr_TR |
dc.identifier.endpage | 31 | tr_TR |
dc.identifier.volume | 128 | tr_TR |
dc.relation.journal | Ars Combinatoria | en_US |
dc.contributor.buuauthor | Tekcan, Ahmet | - |
dc.contributor.buuauthor | Eraşık, Meltem E. | - |
dc.contributor.researcherid | AAH-8518-2021 | tr_TR |
dc.contributor.researcherid | CQA-6599-2022 | tr_TR |
dc.relation.collaboration | Yurt içi | tr_TR |
dc.subject.wos | Mathematics | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.contributor.scopusid | 55883777900 | tr_TR |
dc.contributor.scopusid | 57196046447 | tr_TR |
dc.subject.scopus | Diophantine Equation; Number; Linear Forms in Logarithms | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.