Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/3386
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorArslan, Kadri-
dc.contributor.authorTürkay, Selen-
dc.date.accessioned2019-12-17T11:28:10Z-
dc.date.available2019-12-17T11:28:10Z-
dc.date.issued2004-06-16-
dc.identifier.citationTürkay, S. (2004). Biharmonik eğriler ve yüzeyler. Yayınlanmamış yüksek lisans tezi. Uludağ Üniversitesi Fen Bilimleri Enstitüsü.tr_TR
dc.identifier.urihttp://hdl.handle.net/11452/3386-
dc.description.abstractBu çalışmada IRn deki harmonik ortalama eğrilikîi eğriler ve yüzeyler ele alınmıştır. Bu tür eğriler ve yüzeyler biharmonik eğriler ve yüzeyler olarak adlandırılır. Bu tez yedi bölümden oluşmaktadır. Birinci bölüm giriş bölümüdür. İkinci bölümde çalışmanın ilerideki bölümlerinde kullanılan tanım ve kavramlar verilmiştir. Üçüncü bölümde IRn deki biharmonik eğriler incelenmiştir. Dördüncü bölümde altmanifoldlann normal eğrilik ile normal torsiyonlan ele alınmış ve M c IEn+d altmanifoldunun R kümesine ait olması için gerek ve yeter şart M nin P2-PNS özelikli olması sonucu elde edilmiştir. Beşinci bölüm orijinal sonuçlar içermekte olup bu bölümde, H-normal torsiyon tanımlanmış ve bazı yüzeylerin H-normal torsiyonu hesaplanmıştır. Ayrıca Vrenceannu yüzeyinin H-normal torsiyonu sıfıra eşit ise bu yüzeyin iki çemberin tensör çarpımı olduğu gösterilmiştir. Altıncı bölümde biharmonik hiperyüzeyler incelenmiştir. Yedinci bölümde normal flat biharmonik yüzeyler ele alınmıştır.tr_TR
dc.description.abstractIn this thesis we consider curves and surfaces in IRn with harmonic mean curvature vector H which are called biharmonic. This study consists of seven chapters. The first chapter is introduction. In the second chapter, some basic definitions and notions which will be used in other chapters are given. In the third chapter, some examples of biharmonic curves in IRn are given. In the fourth chapter, normal curvature and normal torsion of the submanifolds M c IEn+d are considered. In the fifth chapter, some orginal results are obtained, H-normal torsion is defined and some examples are given. It has been proved that if the Vrenceannu surface has vanishing H-normal torsion then it must be a tensor product of two plane circles. In the sixth chapter, biharmonic hipersurfaces are considered. In the final chapter, normaly flat, biharmonic surfaces are investigated.en_US
dc.format.extentVI, 80 sayfatr_TR
dc.language.isotrtr_TR
dc.publisherUludağ Üniversitesitr_TR
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMatematiktr_TR
dc.subjectMathematicsen_US
dc.titleBiharmonik eğriler ve yüzeylertr_TR
dc.title.alternativeBiharmonic curves and surfacesen_US
dc.typemasterThesisen_US
dc.relation.publicationcategoryTeztr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen Bilimleri Enstitüsü/Matematik Anabilim Dalı.tr_TR
Appears in Collections:Fen Bilimleri Yüksek Lisans Tezleri / Master Degree

Files in This Item:
File Description SizeFormat 
154069.pdf
  Until 2099-12-31
6.94 MBAdobe PDFView/Open Request a copy


This item is licensed under a Creative Commons License Creative Commons