Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/33996
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBérczes, Attila-
dc.contributor.authorPink, István-
dc.date.accessioned2023-09-24T12:54:13Z-
dc.date.available2023-09-24T12:54:13Z-
dc.date.issued2017-07-12-
dc.identifier.citationBerczes, A. vd. (2018). ''On the Diophantine equation (x+1)(k) + (x+2)(k) + ... + (2x)(k) = y(n)''. Journal of Number Theory, 183, 326-351.en_US
dc.identifier.issn0022-314X-
dc.identifier.issn1096-1658-
dc.identifier.urihttps://doi.org/10.1016/j.jnt.2017.07.020-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0022314X17302895-
dc.identifier.urihttp://hdl.handle.net/11452/33996-
dc.description.abstractIn this work, we give upper bounds for n on the title equation. Our results depend on assertions describing the precise exponents of 2 and 3 appearing in the prime factorization of T-k(x) = (x + 1)(k) + (x + 2)(k) + ... + (2x)(k). Further, on combining Baker's method with the explicit solution of polynomial exponential congruences (see e.g. [6]), we show that for 2 <= x <= 13, k >= 1,y >= 2 and n >= 3 the title equation has no solutions.en_US
dc.description.sponsorshipEuropean Social Fund (ESF) - EFOP-3.6.1-16-2016-00022en_US
dc.description.sponsorshipEuropean Union (EU)en_US
dc.description.sponsorshipAustrian Science Fund (FWF) - P 24801-N26en_US
dc.description.sponsorshipHungarian Academy of Sciences - 2014/70en_US
dc.description.sponsorshipOrszagos Tudomanyos Kutatasi Alapprogramok (OTKA) - K115479 - NK104208en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMathematicsen_US
dc.subjectPower sumsen_US
dc.subjectPowersen_US
dc.subjectPolynomial-exponential congruencesen_US
dc.subjectLinear forms in two logarithmsen_US
dc.subjectSumsen_US
dc.titleOn the Diophantine equation (x+1)(k) + (x+2)(k) + ... + (2x)(k) = y(n)en_US
dc.typeArticleen_US
dc.identifier.wos000414380200016tr_TR
dc.identifier.scopus2-s2.0-85029553067tr_TR
dc.relation.tubitakBIDEB-2219en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyet Fakültesi/Matematik Bölümü.tr_TR
dc.relation.bap2015-23tr_TR
dc.identifier.startpage326tr_TR
dc.identifier.endpage351tr_TR
dc.identifier.volume183tr_TR
dc.relation.journalJournal of Number Theoryen_US
dc.contributor.buuauthorSavaş, Gamze-
dc.contributor.buuauthorSoydan, Gökhan-
dc.contributor.researcheridFWV-5620-2022tr_TR
dc.contributor.researcheridGEK-9891-2022tr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.subject.wosMathematicsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3en_US
dc.contributor.scopusid57206274023tr_TR
dc.contributor.scopusid23566953200tr_TR
dc.subject.scopusDiophantine Equation; Number; Linear Forms in Logarithmsen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Savaş_vd_2018.pdf462.53 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons