Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/34302
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Adiga, Chandrashekar | - |
dc.contributor.author | Ramaswamy, H. N. | - |
dc.date.accessioned | 2023-10-12T06:34:59Z | - |
dc.date.available | 2023-10-12T06:34:59Z | - |
dc.date.issued | 2015-09-17 | - |
dc.identifier.citation | Adiga, C. vd. (2016). "On the constant term of the minimal polynomial of cos (2 pi/n) over Q". Filomat, 30(4), 1097-1102. | en_US |
dc.identifier.issn | 0354-5180 | - |
dc.identifier.uri | https://doi.org/10.2298/FIL1604097A | - |
dc.identifier.uri | https://doiserbia.nb.rs/Article.aspx?ID=0354-51801604097A | - |
dc.identifier.uri | http://hdl.handle.net/11452/34302 | - |
dc.description.abstract | The algebraic numbers cos (2 pi/n) and 2 cos (pi/n) play an important role in the theory of discrete groups and has many applications because of their relation with Chebycheff polynomials. There are some partial results in literature for the minimal polynomial of the latter number over rationals until 2012 when a complete solution was given in [5]. In this paper we determine the constant term of the minimal polynomial of cos(2 pi/n) over Q by a new method. | en_US |
dc.language.iso | en | en_US |
dc.publisher | University of Nis | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Atıf Gayri Ticari Türetilemez 4.0 Uluslararası | tr_TR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Mathematics | en_US |
dc.subject | Cyclotomic polynomial | en_US |
dc.subject | Constant term | en_US |
dc.title | On the constant term of the minimal polynomial of cos (2 pi/n) over Q | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000378403800026 | tr_TR |
dc.identifier.scopus | 2-s2.0-84966267364 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. | tr_TR |
dc.relation.bap | 2003-23 | tr_TR |
dc.relation.bap | 2003-87 | tr_TR |
dc.relation.bap | 2015-17 | tr_TR |
dc.relation.bap | 2015-23 | tr_TR |
dc.contributor.orcid | 0000-0002-0700-5774 | tr_TR |
dc.identifier.startpage | 1097 | tr_TR |
dc.identifier.endpage | 1102 | tr_TR |
dc.identifier.volume | 30 | tr_TR |
dc.identifier.issue | 4 | tr_TR |
dc.relation.journal | Filomat | en_US |
dc.contributor.buuauthor | Cangül, İsmail Naci | - |
dc.contributor.researcherid | ABA-6206-2020 | tr_TR |
dc.contributor.researcherid | J-3505-2017 | tr_TR |
dc.relation.collaboration | Yurt dışı | tr_TR |
dc.subject.wos | Mathematics, applied | en_US |
dc.subject.wos | Mathematics | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q3 | en_US |
dc.contributor.scopusid | 57189022403 | tr_TR |
dc.subject.scopus | Hecke Groups; Modular Forms; Graph | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Adiga_vd_2016.pdf | 240.14 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License