Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/34302
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAdiga, Chandrashekar-
dc.contributor.authorRamaswamy, H. N.-
dc.date.accessioned2023-10-12T06:34:59Z-
dc.date.available2023-10-12T06:34:59Z-
dc.date.issued2015-09-17-
dc.identifier.citationAdiga, C. vd. (2016). "On the constant term of the minimal polynomial of cos (2 pi/n) over Q". Filomat, 30(4), 1097-1102.en_US
dc.identifier.issn0354-5180-
dc.identifier.urihttps://doi.org/10.2298/FIL1604097A-
dc.identifier.urihttps://doiserbia.nb.rs/Article.aspx?ID=0354-51801604097A-
dc.identifier.urihttp://hdl.handle.net/11452/34302-
dc.description.abstractThe algebraic numbers cos (2 pi/n) and 2 cos (pi/n) play an important role in the theory of discrete groups and has many applications because of their relation with Chebycheff polynomials. There are some partial results in literature for the minimal polynomial of the latter number over rationals until 2012 when a complete solution was given in [5]. In this paper we determine the constant term of the minimal polynomial of cos(2 pi/n) over Q by a new method.en_US
dc.language.isoenen_US
dc.publisherUniversity of Nisen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMathematicsen_US
dc.subjectCyclotomic polynomialen_US
dc.subjectConstant termen_US
dc.titleOn the constant term of the minimal polynomial of cos (2 pi/n) over Qen_US
dc.typeArticleen_US
dc.identifier.wos000378403800026tr_TR
dc.identifier.scopus2-s2.0-84966267364tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.relation.bap2003-23tr_TR
dc.relation.bap2003-87tr_TR
dc.relation.bap2015-17tr_TR
dc.relation.bap2015-23tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.identifier.startpage1097tr_TR
dc.identifier.endpage1102tr_TR
dc.identifier.volume30tr_TR
dc.identifier.issue4tr_TR
dc.relation.journalFilomaten_US
dc.contributor.buuauthorCangül, İsmail Naci-
dc.contributor.researcheridABA-6206-2020tr_TR
dc.contributor.researcheridJ-3505-2017tr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.subject.wosMathematics, applieden_US
dc.subject.wosMathematicsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3en_US
dc.contributor.scopusid57189022403tr_TR
dc.subject.scopusHecke Groups; Modular Forms; Graphen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Adiga_vd_2016.pdf240.14 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons