Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11452/4858
Başlık: Konveks harmonik dönüşümler
Diğer Başlıklar: Convex harmonic mappings
Yazarlar: Öztürk, Metin
Kaya, Asiye
Uludağ Üniversitesi/Fen Bilimleri Enstitüsü/Matematik Anabilim Dalı.
Anahtar kelimeler: Harmonik fonksiyonlar
Yalınkat harmonik dönüşümler
Konveks harmonik dönüşümler
Harmonic functions
Harmonic univalent mappings
Convex harmonic mappings
Yayın Tarihi: 17-Tem-2009
Yayıncı: Uludağ Üniversitesi
Atıf: Kaya, A. (2009). Konveks harmonik dönüşümler. Yayınlanmamış yüksek lisans tezi. Uludağ Üniversitesi Fen Bilimleri Enstitüsü.
Özet: Bu çalısma esas olarak, reel ve kompleks analizde önemli bir yer tutan, fen ve mühendislikte uygulama alanı olan reel ve kompleks harmonik fonksiyonlar üzerine kurulmustur. Çalısmamızın birinci bölümünde, diğer bölümlerde kullanılacak olan temel tanım ve teoremler ispatsız olarak verildi. Đkinci bölümde; reel harmonik fonksiyon ve özellikleri, harmonik esleniğin bulunması, harmonik fonksiyonların ortalama değer özelliği, harmonik fonksiyonlar için maksimum ve minimum özellikleri, bir daire üzerinde tanımlı harmonik fonksiyonlar ve Dirichlet problemi, Harnack esitsizliği, yansıma prensibi, harmonik fonksiyonlar sınıfı ve bu sınıfın tamlığı, Schwarz, Poisson ve Green formülleri, halka bölgeler ve sonlu bağlantılı bölgeler üzerinde tanımlı harmonik fonksiyonların temsili verildi. Üçüncü bölümde, reel ve sanal kısımları harmonik olan fakat eslenik olmak zorunda olmayan kompleks değerli harmonik yalınkat fonksiyonlar üzerinde duruldu. Bu fonksiyonların kanonik gösterimi, birim daireyi konveks bölgeler üzerine yalınkat olarak resmeden harmonik dönüsümler ve yapısal özellikleri, bir yönde konveks harmonik dönüsümler, konveks harmonik dönüsümlerin katsayı bağıntıları ve çesitli konveks yalınkat harmonik fonksiyon örnekleri verildi.
This work is mainly based on real and complex harmonic functions which are taken an important place in the real and complex analysis and which have many application areas on science and engineering. In the first section of our study, the basic definitions and theorems which will be used in the other parts were given without proof. Real harmonic functions and features, harmonic conjugate of a harmonic function, mean value property of the harmonic functions, maximum and minimum properties for harmonic functions, harmonic functions defined on a disk and Dirichlet problem, Harnack inequality, the reflection principle, harmonic functions class and completeness of this class, Schwarz, Poisson and Green formulas, defined on the finitely connected region and annulus representation of harmonic functions were given in the second section. In the third section the complex valued harmonic univalent functions, which have harmonic real and imajinary parts but have not to be conjugate, were emphasized. The canonical representation of this functions, the harmonic transformations which are the unit disk translate on convex regions as univalent and structural properties, convex harmonic mappings in one direction, coefficient conditions of convex harmonic conversions, and various convex univalent harmonic functions examples were given
URI: http://hdl.handle.net/11452/4858
Koleksiyonlarda Görünür:Fen Bilimleri Yüksek Lisans Tezleri / Master Degree

Bu öğenin dosyaları:
Dosya Açıklama BoyutBiçim 
264610.pdf8.71 MBAdobe PDFKüçük resim
Göster/Aç


Bu öğe kapsamında lisanslı Creative Commons License Creative Commons