Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/24534
Title: | On the solution of the monge-ampere equation ZxxZyy-Z2xy = f(x,y) with quadratic right side |
Authors: | Aminov, Yu A. Bayram, Bengü Kılıç Öztürk, Günay Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı. 0000-0001-5861-0184 0000-0002-1440-7050 Arslan, Kadri Bulca, Betül Murathan, Cengizhan ABH-3658-2020 AAG-7693-2021 AAG-8775-2021 6603079141 35226209600 6506718146 |
Keywords: | Mathematics Physics Monge-Ampere equation Polynomial Convex surface |
Issue Date: | 2011 |
Publisher: | B Verkin Inst Low Temperature Physics & Engineering Nas Ukra |
Citation: | Aminov, Y. vd. (2011). "On the solution of the monge-ampere equation ZxxZyy-Z2xy = f(x,y) with quadratic right side". Journal of Mathematical Physics, Analysis, Geometry, 7(3), 203-211. |
Abstract: | For the Monge-Ampere equation Z(xx)Z(yy) - Z(xy)(2) = b(20)(x2)+b(11).xy+b(02y)(2)+ b(00) we consider the question on the existence of a solution Z(x, y) in the class of polynomials such that Z = Z(x, y) is a graph of a convex surface. If Z is a polynomial of odd degree, then the solution does not exist. If Z is a polynomial of 4-th degree and 4b(20)b(02) - b(11)(2) > 0, then the solution also does not exist. If 4b(20)b(02) - b(11)(2) = 0, then we have solutions. |
URI: | http://hdl.handle.net/11452/24534 |
ISSN: | 1812-9471 1817-5805 |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.