Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/29215
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDas, Kinkar Ch-
dc.contributor.authorAkgüneş, Nihat-
dc.contributor.authorÇevik, A. Sinan-
dc.date.accessioned2022-10-26T12:05:43Z-
dc.date.available2022-10-26T12:05:43Z-
dc.date.issued2014-02-10-
dc.identifier.citationDas, K. C. vd. (2016). "On the first Zagreb index and multiplicative Zagreb coindices of graphs". Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica, 24(1), 153-176.en_US
dc.identifier.issn1224-1784-
dc.identifier.issn1844-0835-
dc.identifier.urihttps://doi.org/10.1515/auom-2016-0008-
dc.identifier.urihttps://sciendo.com/article/10.1515/auom-2016-0008-
dc.identifier.urihttp://hdl.handle.net/11452/29215-
dc.description.abstractFor a (molecular) graph G with vertex set V (G) and edge set E(G), the first Zagreb index of G is defined as M-1(G) = Sigma v(i is an element of V(G))d(C)(v(i))(2), where d(G) (v(i)) is the degree of vertex v(i), in G. Recently Xu et al. introduced two graphical invariants (Pi) over bar (1) (G) = Pi v(i)v(j is an element of E(G)) (dG (v(i))+dG (v(j))) and (Pi) over bar (2)(G) = Pi(vivj is an element of E(G)) (dG (v(i))+dG (v(j))) named as first multiplicative Zagreb coindex and second multiplicative Zagreb coindex, respectively. The Narumi-Katayama index of a graph G, denoted by NK(G), is equal to the product of the degrees of the vertices of G, that is, NK(G) = Pi(n)(i=1) d(G) (v(i)). The irregularity index t(G) of G is defined as the num=1 ber of distinct terms in the degree sequence of G. In this paper, we give some lower and upper bounds on the first Zagreb index M-1(G) of graphs and trees in terms of number of vertices, irregularity index, maximum degree, and characterize the extremal graphs. Moreover, we obtain some lower and upper bounds on the (first and second) multiplicative Zagreb coindices of graphs and characterize the extremal graphs. Finally, we present some relations between first Zagreb index and NarumiKatayama index, and (first and second) multiplicative Zagreb index and coindices of graphs.en_US
dc.description.sponsorshipKorean Government - 2013R1A1A2009341en_US
dc.description.sponsorshipNecmettin Erbakan Üniversitesitr_TR
dc.description.sponsorshipSelçuk Üniversitesitr_TR
dc.language.isoenen_US
dc.publisherOvidius Universityen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMathematicsen_US
dc.subjectFirst Zagreb indexen_US
dc.subjectFirst and second multiplicative Zagreb coindexen_US
dc.subjectNarumi-Katayama indexen_US
dc.subjectEccentric connectivity indexen_US
dc.subjectMolecular-orbitalsen_US
dc.titleOn the first Zagreb index and multiplicative Zagreb coindices of graphsen_US
dc.typeArticleen_US
dc.identifier.wos000374768100008tr_TR
dc.identifier.scopus2-s2.0-84962731881tr_TR
dc.relation.tubitak221-Programmetr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.relation.bapF-2015/23tr_TR
dc.relation.bapF-2015/17tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.identifier.startpage153tr_TR
dc.identifier.endpage176tr_TR
dc.identifier.volume24tr_TR
dc.identifier.issue1tr_TR
dc.relation.journalAnalele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematicaen_US
dc.contributor.buuauthorTogan, Müge-
dc.contributor.buuauthorYurttaş, Aysun-
dc.contributor.buuauthorCangül, İsmail Naci-
dc.contributor.researcheridAAG-8470-2021tr_TR
dc.contributor.researcheridABA-6206-2020tr_TR
dc.contributor.researcheridJ-3505-2017tr_TR
dc.relation.collaborationYurt içitr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.subject.wosMathematics, applieden_US
dc.subject.wosMathematicsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.indexed.pubmedPubMeden_US
dc.wos.quartileQ4en_US
dc.contributor.scopusid54403978300tr_TR
dc.contributor.scopusid37090056000tr_TR
dc.contributor.scopusid57189022403tr_TR
dc.subject.scopusGraph; Unicyclic Graph; Vertex Degreeen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Togan_vd_2016.pdf829.81 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons