Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11452/29215
Başlık: On the first Zagreb index and multiplicative Zagreb coindices of graphs
Yazarlar: Das, Kinkar Ch
Akgüneş, Nihat
Çevik, A. Sinan
Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.
0000-0002-0700-5774
Togan, Müge
Yurttaş, Aysun
Cangül, İsmail Naci
AAG-8470-2021
ABA-6206-2020
J-3505-2017
54403978300
37090056000
57189022403
Anahtar kelimeler: Mathematics
First Zagreb index
First and second multiplicative Zagreb coindex
Narumi-Katayama index
Eccentric connectivity index
Molecular-orbitals
Yayın Tarihi: 10-Şub-2014
Yayıncı: Ovidius University
Atıf: Das, K. C. vd. (2016). "On the first Zagreb index and multiplicative Zagreb coindices of graphs". Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica, 24(1), 153-176.
Özet: For a (molecular) graph G with vertex set V (G) and edge set E(G), the first Zagreb index of G is defined as M-1(G) = Sigma v(i is an element of V(G))d(C)(v(i))(2), where d(G) (v(i)) is the degree of vertex v(i), in G. Recently Xu et al. introduced two graphical invariants (Pi) over bar (1) (G) = Pi v(i)v(j is an element of E(G)) (dG (v(i))+dG (v(j))) and (Pi) over bar (2)(G) = Pi(vivj is an element of E(G)) (dG (v(i))+dG (v(j))) named as first multiplicative Zagreb coindex and second multiplicative Zagreb coindex, respectively. The Narumi-Katayama index of a graph G, denoted by NK(G), is equal to the product of the degrees of the vertices of G, that is, NK(G) = Pi(n)(i=1) d(G) (v(i)). The irregularity index t(G) of G is defined as the num=1 ber of distinct terms in the degree sequence of G. In this paper, we give some lower and upper bounds on the first Zagreb index M-1(G) of graphs and trees in terms of number of vertices, irregularity index, maximum degree, and characterize the extremal graphs. Moreover, we obtain some lower and upper bounds on the (first and second) multiplicative Zagreb coindices of graphs and characterize the extremal graphs. Finally, we present some relations between first Zagreb index and NarumiKatayama index, and (first and second) multiplicative Zagreb index and coindices of graphs.
URI: https://doi.org/10.1515/auom-2016-0008
https://sciendo.com/article/10.1515/auom-2016-0008
http://hdl.handle.net/11452/29215
ISSN: 1224-1784
1844-0835
Koleksiyonlarda Görünür:Scopus
Web of Science

Bu öğenin dosyaları:
Dosya Açıklama BoyutBiçim 
Togan_vd_2016.pdf829.81 kBAdobe PDFKüçük resim
Göster/Aç


Bu öğe kapsamında lisanslı Creative Commons License Creative Commons