Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/32879
Title: On the spectral radius of bipartite graphs which are nearly complete
Authors: Das, Kinkar Chandra
Maden, Ayşe Dilek
Çevik, Ahmet Sinan
Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.
0000-0002-0700-5774
0000-0002-0700-5774
Cangül, İsmail Naci
J-3505-2017
ABA-6206-2020
57189022403
Keywords: Mathematics
Bipartite graph
Adjacency matrix
Spectral radius
Eigenvalues
Conjectures
Bounds
Proof
Issue Date: Dec-2013
Publisher: Springer
Citation: Das, K. C. vd. (2013). “On the spectral radius of bipartite graphs which are nearly complete”. Journal of Inequalities and Applications, 2013.
Abstract: For p, q, r, s, t is an element of Z(+) with rt <= p and st <= q, let G = G(p, q; r, s; t) be the bipartite graph with partite sets U = {u(1), ..., u(p)} and V = {v(1),..., v(q)} such that any two edges u(i) and v(j) are not adjacent if and only if there exists a positive integer k with 1 <= k <= t such that (k - 1) r + 1 <= i <= kr and (k - 1) s + 1 <= j <= ks. Under these circumstances, Chen et al. (Linear Algebra Appl. 432: 606-614, 2010) presented the following conjecture: Assume that p <= q, k < p, vertical bar U vertical bar = p, vertical bar V vertical bar = q and vertical bar E(G)vertical bar = pq - k. Then whether it is true that lambda(1)(G) <= lambda(1)(G(p, q; k, 1; 1)) = root pq - k + root p(2)q(2) - 6pqk + 4pk + 4qk(2) - 3k(2)/2. In this paper, we prove this conjecture for the range min(vh is an element of V){deg v(h)} <= left perpendicular p-1/2right perpendicular.
URI: https://doi.org/10.1186/1029-242X-2013-121
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-121
http://hdl.handle.net/11452/32879
ISSN: 1029-242X
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Cangül_vd_2013.pdf227.73 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons