Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/32879
Title: | On the spectral radius of bipartite graphs which are nearly complete |
Authors: | Das, Kinkar Chandra Maden, Ayşe Dilek Çevik, Ahmet Sinan Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı. 0000-0002-0700-5774 0000-0002-0700-5774 Cangül, İsmail Naci J-3505-2017 ABA-6206-2020 57189022403 |
Keywords: | Mathematics Bipartite graph Adjacency matrix Spectral radius Eigenvalues Conjectures Bounds Proof |
Issue Date: | Dec-2013 |
Publisher: | Springer |
Citation: | Das, K. C. vd. (2013). “On the spectral radius of bipartite graphs which are nearly complete”. Journal of Inequalities and Applications, 2013. |
Abstract: | For p, q, r, s, t is an element of Z(+) with rt <= p and st <= q, let G = G(p, q; r, s; t) be the bipartite graph with partite sets U = {u(1), ..., u(p)} and V = {v(1),..., v(q)} such that any two edges u(i) and v(j) are not adjacent if and only if there exists a positive integer k with 1 <= k <= t such that (k - 1) r + 1 <= i <= kr and (k - 1) s + 1 <= j <= ks. Under these circumstances, Chen et al. (Linear Algebra Appl. 432: 606-614, 2010) presented the following conjecture: Assume that p <= q, k < p, vertical bar U vertical bar = p, vertical bar V vertical bar = q and vertical bar E(G)vertical bar = pq - k. Then whether it is true that lambda(1)(G) <= lambda(1)(G(p, q; k, 1; 1)) = root pq - k + root p(2)q(2) - 6pqk + 4pk + 4qk(2) - 3k(2)/2. In this paper, we prove this conjecture for the range min(vh is an element of V){deg v(h)} <= left perpendicular p-1/2right perpendicular. |
URI: | https://doi.org/10.1186/1029-242X-2013-121 https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-121 http://hdl.handle.net/11452/32879 |
ISSN: | 1029-242X |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Cangül_vd_2013.pdf | 227.73 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License