Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/33309
Title: Generalized integral inequalities for convex functions
Authors: Ekinci, Alper
Uludağ Üniversitesi/Eğitim Fakültesi.
Özdemir, M. Emin
AAH-1091-2021
22734889600
Keywords: Mathematics
Convex functions
Hermite-Hadamard inequality
Simpson's inequality
Power-mean inequality
Ostrowski's inequality
Holder's inequality
Differentiable mappings
Real numbers
Formula
Issue Date: 2016
Publisher: Element
Citation: Özdemir, M. E. ve Ekinci, A. (2016). "Generalized integral inequalities for convex functions". Mathematical Inequalities and Applications, 19(4), 1429-1439.
Abstract: In this paper, we prove some general inequalities for convex functions and give Ostrowski, Hadamard and Simpson type results for a special case of these inequalities.
URI: https://doi.org/10.7153/mia-19-106
http://hdl.handle.net/11452/33309
ISSN: 1331-4343
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Özdemir_ve_Ekinci_2016.pdf239.61 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons