Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/33728
Title: | Grafların karakteristik polinomlarının hesaplanmasında yeni yöntemler |
Other Titles: | New methods in calculating the characteristic polynomials of graphs |
Authors: | Cangül, İ. Naci Zihni, Fikriye Bursa Uludağ Üniversitesi/Fen Bilimleri Enstitüsü/Matematik Anabilim Dalı. 0009-0006-2126-9959 |
Keywords: | Graf Omega invaryant Graf enerjisi Komşuluk matrisi Karakteristik polinom Özdeğer Spektrum Döngü Katlı kenar Sallanan kenar Kopma köşesi Köprü Graph Omega invariant Graph energy Adjacency matrix Characteristic polynomial Eigenvalue Spectrum Loop Multiple edges Pendant edge Cut vertex Bridge |
Issue Date: | 2023 |
Publisher: | Bursa Uludağ Üniversitesi |
Citation: | Zihni, F. (2023). Grafların karakteristik polinomlarının hesaplanmasında yeni yöntemler. Yayınlanmamış doktora tezi. Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü. |
Abstract: | Bu çalışmanın amacı, bazı graf türlerinde omega invaryantı yardımıyla graf enerjisi ile ilgili yeni sonuçlar elde etmektir. Aynı zamanda bir grafın 𝑛 × 𝑛 boyutlu komşuluk matrisinden yararlanarak elde edilen karakteristik poli nomuyla ilgili yeni bulgulara ve lineer cebir yöntemleri kullanılarak bulunan karakteristik polinom aracılığıyla grafın özdeğerlerine ulaşmaktır. Bu tez 5 bölümden oluşmaktadır. Birinci bölüm giriş bölümüdür. Bu bölümde grafın tarihçesinden ve kullanım alanlarından bahsedilmiştir. İkinci bölümde kuramsal temeller ve graf teoride kullanılan genel tanımlar ve tez içinde sıkça kullanacağımız graf türlerinden bahsedilmiştir. Üçüncü bölümde tezde kullanılacak materyal ve yöntemlerden bahsedilmiştir ve bazı özel grafların omega in varyantı, spektrumu, graf enerjisi ve karakteristik polinomları bulunmuştur. Dördüncü bölümde döngü(ler), katlı kenar(lar)veya bir sallanan kenar eklenmiş graflar üzerinde durulmuştur. Bir grafa döngü, katlı kenar veya bir sallanan kenar eklendiğinde oluşan grafın karakteristik polinomu ile ilkgrafın karakteristik polinomu arasında bir ilişki olduğu saptanmıştır. Yeni bir işlem olarak manyetik ayırma işlemi tanımlanmış ve belli graf türlerine manyetik ayırma işlemi uygulanarak karakteristik polinomlar incelenmiştir. Bir graftan bir kopma köşesi, birköprü veya bir köprü olmayan kenar silindiğinde grafın karakteristik polinomunda gerçekleşen değişim incelenmiştir. Beşinci ve son bölümde ise bulduğumuz sonuçlardan bahsedilmiştir. The aim of this study is to obtain new results about graph energy in some graph types by means of omega invariant. At the same time, it is to reach new findings about the characteristic polynomial obtained by using the 𝑛 × 𝑛-dimensional adjacency matrix of a graph and to reach the eigenvalues of the graph through the characteristic polynomial by means of linear algebra methods. This thesis consists of 5 chapters. The first part is the introduction part. In this section, the history of graph and its usage areas are mentioned. In the second chapter, theoretical foundations and general definitions used in graph theory and graph types that we will be used frequently in the thesis are mentioned. In the third chapter, the materials and methods to be used in the thesis are mentioned and omega invariant, spectrum, graph energy and characteristic polynomials of some special graphs are found. The fourth chapter focused on graphs with added loop(s), multiple edge(s) or a single pendant edge. It has been found that when a loop, multiple edges, or a pendant edge is a dded to a graph, there is a relationship between the characteristic polynomial of the obtained graph and the characteristic polynomial of the first graph. Magnetic separation operation is defined as a new operation and the characteristic polynomials of some known graph types were investigated using magnetic seperation. The change in the characteristic polynomial of the graph when a cut vertex, a bridge or a non-bridge is deleted from a graph is examined. In the fifth and last chapter, our results are mentioned. |
URI: | http://hdl.handle.net/11452/33728 |
Appears in Collections: | Fen Bilimleri Doktora Tezleri / PhD Dissertations |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Fikriye_Zihni.pdf | 1.82 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License