Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/33996
Title: On the Diophantine equation (x+1)(k) + (x+2)(k) + ... + (2x)(k) = y(n)
Authors: Bérczes, Attila
Pink, István
Uludağ Üniversitesi/Fen-Edebiyet Fakültesi/Matematik Bölümü.
Savaş, Gamze
Soydan, Gökhan
FWV-5620-2022
GEK-9891-2022
57206274023
23566953200
Keywords: Mathematics
Power sums
Powers
Polynomial-exponential congruences
Linear forms in two logarithms
Sums
Issue Date: 12-Jul-2017
Publisher: Elsevier
Citation: Berczes, A. vd. (2018). ''On the Diophantine equation (x+1)(k) + (x+2)(k) + ... + (2x)(k) = y(n)''. Journal of Number Theory, 183, 326-351.
Abstract: In this work, we give upper bounds for n on the title equation. Our results depend on assertions describing the precise exponents of 2 and 3 appearing in the prime factorization of T-k(x) = (x + 1)(k) + (x + 2)(k) + ... + (2x)(k). Further, on combining Baker's method with the explicit solution of polynomial exponential congruences (see e.g. [6]), we show that for 2 <= x <= 13, k >= 1,y >= 2 and n >= 3 the title equation has no solutions.
URI: https://doi.org/10.1016/j.jnt.2017.07.020
https://www.sciencedirect.com/science/article/pii/S0022314X17302895
http://hdl.handle.net/11452/33996
ISSN: 0022-314X
1096-1658
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Savaş_vd_2018.pdf462.53 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons